Types and functions
VlasovSolvers.VlasovSolution1D1V — Typestruct VlasovSolution1D1VData structure that stores the solution of the Vlasov problem of one dimension in both physical space and phase space.
values::Vector{Matrix{Float64}}times::Vector{Float64}energy::Vector{Float64}saveat::Float64
VlasovSolvers.advection! — Functionadvection!(fp, fi, mesh, interp, v, dt)
advection!(f, grid, v, dt; p)
Advect the distribution function f with velocity v along first f dimension with a time step dt. Interpolation method uses bspline periodic of order 5 by default. Real type version.
advection!(f, grid, v, dt; p)
Advect the distribution function f with velocity v along first f dimension with a time step dt. Interpolation method uses bspline periodic of order 5 by default. Complex type version.
VlasovSolvers.advection_x! — Functionadvection_x!(f, adv, e, v, dt)
VlasovSolvers.advection_v! — Functionadvection_v!(fᵗ, adv, e, dt)
VlasovSolvers.solve — Functionsolve(problem, stepper, dt, nsteps)
solve(problem, stepper, dt, nsteps)
VlasovSolvers.compute_e — Functioncompute_e(f)
compute Ex using that -ik*Ex = rho
VlasovSolvers.compute_rho — Functioncompute_rho(f)
Compute charge density ρ(x,t) = ∫ f(x,v,t) dv
VlasovSolvers.two_stream_instability! — Functiontwo_stream_instability!(f; eps, xi, v0)
VlasovSolvers.Fourier — Typestruct Fourier <: VlasovSolvers.AbstractMethodkx::Vector{Float64}kv::Vector{Float64}
VlasovSolvers.BSLLagrange — Typestruct BSLLagrange <: VlasovSolvers.AbstractMethodorder::Int64interp::SemiLagrangian.Lagrange
VlasovSolvers.bspline — Functionbspline(p, j, x)
Return the value at x in [0,1] of the B-spline with integer nodes of degree p with support starting at j. Implemented recursively using the De Boor's Algorithm
\[B_{i,0}(x) := \left\{ \begin{matrix} 1 & \mathrm{if} \quad t_i ≤ x < t_{i+1} \\ 0 & \mathrm{otherwise} \end{matrix} \right.\]
\[B_{i,p}(x) := \frac{x - t_i}{t_{i+p} - t_i} B_{i,p-1}(x) + \frac{t_{i+p+1} - x}{t_{i+p+1} - t_{i+1}} B_{i+1,p-1}(x).\]