Hamiltonian splitting Spin
GEMPIC.HamiltonianSplittingSpin
— TypeHamiltonianSplittingSpin( maxwell_solver,
kernel_smoother_0, kernel_smoother_1,
particle_group, e_dofs, a_dofs )
Hamiltonian splitting type for Vlasov-Maxwell
- Integral over the spline function on each interval (order p+1)
- Integral over the spline function on each interval (order p)
e_dofs
describing the two components of the electric fielda_dofs
describing the potential vector
GEMPIC.operatorHA
— MethodoperatorHA(h, dt)
\[\begin{aligned} \dot{p} = (A_y, A_z) \cdot \partial_x (A_y, A_z) \\ \dot{Ey} = -\partial_x^2 A_y + A_y \rho \\ \dot{Ez} = -\partial_x^2 A_z + A_z \rho \\ \end{aligned}\]
GEMPIC.operatorHE
— MethodoperatorHE(h, dt)
\[\begin{aligned} \dot{v} & = E_x \\ \dot{A}_y & = -E_y \\ \dot{A}_z & = -E_z \end{aligned}\]
GEMPIC.operatorHp
— MethodoperatorHp(h, dt)
\[\begin{aligned} \dot{x} & =p \\ \dot{E}_x & = - \int (p f ) dp ds \end{aligned}\]
GEMPIC.operatorHs
— MethodoperatorHs(h, dt)
Push H_s: Equations to be solved
\[\begin{aligned} \dot{s} &= s x B = (s_y \partial_x A_y +s_z \partial_x Az, -s_x \partial_x A_y, -s_x \partial_x A_z) \\ \dot{p} &= s \cdot \partial_x B = -s_y \partial^2_{x} A_z + s_z \partial^2_{x} A_y \\ \dot{E}_y &= \int (s_z \partial_x f) dp ds \\ \dot{E}_z &= - \int (s_y \partial_x f) dp ds \end{aligned}\]
GEMPIC.strang_splitting!
— Methodstrang_splitting( h, dt, number_steps)
Strang splitting
- time splitting object
- time step
- number of time steps