Distributions
GEMPIC.CosGaussianParams
— TypeCosGaussianParams( dims, k, α, σ, μ, δ )
Parameters of a distribution with is a product of a Cosine distribution along x and a Normal distribution along v.
n_gaussians
: Number of Gaussiansn_cos
: Number of cosinesnormal
: Normalization constant of each Gaussian
GEMPIC.CosSumGaussian
— TypeCosSumGaussian{D,V}( n_cos, n_gaussians, k, α, σ, μ, δ )
Data type for parameters of initial distribution
\[(1+ \cos( \sum^{n_{cos}}_{i=1} k_i x)) \cdot \sum_{j=1}^{n_{gaussians}} \delta_j \exp \big( -\frac{1}{2} \frac{(v-\mu_j)^2}{\sigma_j^2} \big)\]
Parameters
k
: values of the wave numbers (one array for each cosines)α
: strength of perturbationsσ
: variance of the Gaussian (one velocity vector for each gaussian).μ
: mean value of the Gaussian (one velocity vector for each gaussian).δ
: portion of each Gaussian
Example
\[f(x,v_1,v_2)=\frac{1}{2\pi\sigma_1\sigma_2} \exp \Big( - \frac{1}{2} \big( \frac{v_1^2}{\sigma_1^2} + \frac{v_2^2}{\sigma_2^2} \big) \Big) ( 1 + \alpha \cos(kx)),\]
df = CosSumGaussian{1,2}([[k]],[α], [[σ₁,σ₂]], [[μ₁,μ₂]])
GEMPIC.SumCosGaussian
— TypeSumCosGaussian( dims, n_cos, n_gaussians, k, α, σ, μ, δ )
Data type for parameters of initial distribution
\[(1+ \sum_{i=1}^{n_{cos}} \alpha_i \cos( k_i \mathbf{x})) \cdot \sum_{j=1}^{n_{gaussians}} \delta_j \exp \big( -\frac{1}{2} \frac{(\mathbf{v}-\mu_j)^2}{\sigma_j^2} \big)\]
Parameters
k
: values of the wave numbers (Array of vectors for multiple cosines)α
: strength of perturbationsσ
: variance of the Gaussian ( Array of vectors for multiple Gaussians)μ
: mean value of the Gaussian ( Array multiple Gaussians)normal
: Normalization constant of each Gaussiann_gaussians
: Number of Gaussiansn_cos
: Number of cosinesδ
: portion of each Gaussian
Example
\[f(x,v_1,v_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp \Big( - \frac{1}{2} \big( \frac{v_1^2}{\sigma_1^2} + \frac{v_2^2}{\sigma_2^2} \big) \Big) ( 1 + \alpha_1 \cos(k_1 x) + \alpha_2 \cos(k_2 x) ),\]
df = SumCosGaussian{1,2}([[k₁],[k₂]], [α₁, α₂], [[σ₁,σ₂]], [[0.0,0.0]])
GEMPIC.eval_v_density
— Methodeval_v_density( f, v )
evaluate the normal part of the distribution function
GEMPIC.eval_x_density
— Methodeval_x_density( f, x )
evaluate the cosine part of the distribution function
Spin version
GEMPIC.CosSumGaussianSpin
— TypeSpinCosSumGaussian{D,V}( n_cos, n_gaussians, k, α, σ, μ, δ )
Data type for parameters of initial distribution
\[(1+ \cos( \sum^{n_{cos}}_{i=1} k_i x)) \cdot \sum_{j=1}^{n_{gaussians}} \delta_j \exp \big( -\frac{1}{2} \frac{(v-\mu_j)^2}{\sigma_j^2} \big)\]
Parameters
k
: values of the wave numbers (one array for each cosines)α
: strength of perturbationsσ
: variance of the Gaussian (one velocity vector for each gaussian).μ
: mean value of the Gaussian (one velocity vector for each gaussian).δ
: portion of each Gaussian
Example
\[f(x,v_1,v_2)=\frac{1}{2\pi\sigma_1\sigma_2} \exp \Big( - \frac{1}{2} \big( \frac{v_1^2}{\sigma_1^2} + \frac{v_2^2}{\sigma_2^2} \big) \Big) ( 1 + \alpha \cos(kx)),\]
df = CosSumGaussian{1,1,3}([[k]],[α], [[σ₁,σ₂]], [[μ₁,μ₂]])